Interactive Decompilation

José Manuel Rios Fonseca

Faculty of Engineering of the University of Porto

13 December 2006

Dissertation prepared under the supervision of
Dr. Ademar Manuel Teixeira de Aguiar and of
Dr. Jodo Alexandre Baptista Vieira Saraiva

José Fonseca (FEUP) Interactive Decompilation 13 Dec 2006 1/35

Presentation Outline

0 Introduction
@ Catalog of Low-level Refactorings
© The IDC tool

@ Conclusions

José Fonseca (FEUP) Interactive Decompilation 13 Dec 2006 2/35

Motivation for Reverse Engineering

@ Software development is a fast paced technology field.
@ Reverse engineering techniques can be used to:

e port software into new programming languages or hardware
architectures;

e maintain software from a disappeared vendor;

e attest the violation of patents or business secrets;

o detect malicious code.

José Fonseca (FEUP) Interactive Decompilation 13 Dec 2006 3/35

Compilation vs. Decompilation

b1

Source code

v

High level code

?

Assembly code

Assembly .
Disassembly

Machine code

Assembly code

Machine code

José Fonseca (FEUP) Interactive Decompilation 13 Dec 2006

Decompilation Feasibility

Fully automated decompilation

Is not always possible because:

@ there is an ambiguous correspondence between high-level language
statements and the respective machine code instructions;

@ much of the original information is discarded during the compilation
process;

@ the distinction between data and code in an executable is often
blurred.

v

Human intervention

Human action can be employed to:

@ disambiguate code semantics,

@ organize code,

@ and improve readability.

v

José Fonseca (FEUP) Interactive Decompilation 13 Dec 2006 5/35

Proposed Strategy

© Define a set of transformations of low-level (near Assembly) code that
aims at improving its structure, readability, semantics without
changing its behavior (i.e., refactorings).

@ Developed an interactive decompilation tool that assists the user in
the task of reverse engineering Assembly code, by automating the
application of the above mentioned transformations.

José Fonseca (FEUP) Interactive Decompilation 13 Dec 2006 6 /35

Refactoring and Decompilation

Refactoring Definition

A refactoring is a change made to the internal structure of software to
make it easier to understand and cheaper to modify without changing its
observable behavior.

Refactoring vs. decompiling

@ The decompilation of a program has both the same understanding
and maintenance simplification aims and the same
behavior-preserving property as does a refactoring.

@ Thus the decompilation of a program could be carried out as the
composition of basic refactorings.

José Fonseca (FEUP) Interactive Decompilation 13 Dec 2006 7/35

Decompilation as a Sequence of Refactorings

Code
Abstraction
Level Verbatim copy
High-level _} - _______________~_ _____/ _ ______"= =
Refactoring
Compilation
Refactoring
X '] Refactoring
Translation | I
I
Disassembly | |
Low-level —} - - __ ! - !
\ i Decompilation
‘ | | |
| Assembly | |
1 1 1 1 S
I I I I -
Machine Assembly Intermediate C Language
Code Representation Level

(quasi-C)

José Fonseca (FEUP) Interactive Decompilation 13 Dec 2006 8 /35

Refactoring Categorization

ments, and local variables
is not properly retained by
the Assembly code.

Category Rationale Intent
Function prototyping Information about the | Lift the bodies, prototypes,
function bodies, argu- | and frames of functions.

Organizing data

During compilation all the
data flow is mapped to ac-
cesses from/to the proces-
sor registers, stack, and
global memory.

Transpose that data flow in
terms of local and global
variables.

Structuring control flow

High-level language con-
trol structures are trans-
lated into jumps and condi-
tional jumps on Assembly
language.

Recover the high-level con-
trol structure that match
the jumps control-flow

graph.

José Fonseca (FEUP)

Interactive Decompilation

13 Dec 2006 9/35

Category

Name

Function prototyping

Extract Function
Set Function Return
Add Function Argument

Organizing data

Extract Local Variable

Inline Temp

Split Temporary Variable

Replace Magic Number with Symbolic Constant
Replace Data Values with Record

Replace Type

Dead Code Elimination

Rename Symbol

Simplify Expression

Structuring control flow

Structure /f Statement

Structure /~Else Statement
Structure Do-While Statement
Structure Infinite Loop

Structure Continue Statement
Structure Break Statement
Structure While Statement

Inline Return Statement
Consolidate Boolean And Expression

José Fonseca (FEUP)

Interactive Decompilation 13 Dec 2006

10 / 35

Original C code vs. generated Assembly

.text
.globl factorial
factorial:
testl Y%eax, %eax
int factorial(int n) jne L2
{ movl $1, Y%edx
int f; jmp L4
f=1; L2:
while(n) — movl $1, Yedx
fx=n——; .L5:
return f; imull Yeax, %edx
} decl ‘Jeax
jne .L5
L4
movl Y%edx, heax
ret

José Fonseca (FEUP) Interactive Decompilation 13 Dec 2006 11 /35

Assembly code vs. transliterated IR

.text
.globl factorial
factorial: = factorial:
testl Jeax, %eax = tmpl = eax & eax;
cf =0;
of = 0;
zf = tmpl == 0;
nf = tmpl >> 31 & 1,
jne .L2 = if(1zf)
goto .L2;
movl $1, %edx = edx = 1;
jmp .L4 = goto .L4;
LL2: = L2
movl $1, %edx = edx = 1;
.L5: = .L5:
imull Yeax, %edx = tmp2 = (long) edx * (long) eax;
edx = edx * eax;
cf = (tmp2 >> 32 & OxffffffffL) == 0
|| (tmp2 >> 32 & OxfFfFffffL) == Oxffff
fFFFL;
of = (tmp2 >> 32 & OxfffffffflL) == 0
|| (tmp2 >> 32 & OxfFfFffffL) == Oxffff
fFFFL;
decl Yheax = tmp3 = eax;

José Fonseca (FEUP) Interactive Decompilation 13 Dec 2006 12 / 35

You have a set of code fragments that constitutes an individual function.
Turn the fragments into a function.

factorial:

tmpl = eax & eax;

cf =0;

of = 0;

zf = tmpl == 0;

nf =tmpl >> 31 & 1;

if (1zf)
goto .L5;
.L4:
eax = edx;
return;

José Fonseca (FEUP)

=
=

=

void factorial()
{
tmpl = eax & eax;
cf =0;
of = 0;
zf = tmpl == 0;
nf =tmpl >> 31 & 1,

if(1zf)
goto .L5;
.L4:
eax = edx;
return;

}

Interactive Decompilation 13 Dec 2006 13 / 35

Set Function Return

A register or the stack is used to pass the function return value.
Define the function return type with the appropriate type, making explicit that
such stack position or register is the return value.

void factorial() = int factorial()

{ {
tmpl = eax & eax; tmpl = eax & eax;
cf =0; cf =0;
of = 0; of = 0;
zf = tmpl == 0; zf = tmpl == 0;
zf = eax == 0; zf = eax == 0;
if (1zf) if(1zf)

goto .L5; goto .L5;

L4: L4:
eax = edx; eax = edx;
return; = return eax;

} }

José Fonseca (FEUP) Interactive Decompilation 13 Dec 2006 14 / 35

Add Function Argument

The stack or a register is used to pass an argument to a function.
Define a new function argument with the appropriate type, making explicit that
such stack position or register is used to hold the argument.

int factorial()

tmpl = eax & eax;
cf =0;
of = 0;
zf = tmpl == 0;
nf = tmpl >> 31 & 1;
if (1zf)
goto .L2;
edx = 1;
goto .L4;
L2:
edx = 1;

José Fonseca (FEUP)

= int factorial(int eax)

{
tmpl = eax & eax;
cf =0;
of = 0;

zf = tmpl == 0;
nf = tmpl >> 31 & 1;
if(1zf)
goto .L2;
edx = 1;
goto .L4;
L2:
edx = 1;

Interactive Decompilation 13 Dec 2006 15 / 35

Dead Code Elimination

You have several variable assignments, whose value is not used.
Remove those variable assignments.

int factorial(int eax) int factorial(int eax)
{ {
tmpl = eax & eax; tmpl = eax & eax;
cf =0; =
of = 0; =
zf = tmpl == 0; zf = tmpl == 0;
nf = tmpl >> 31 & 1; =
if (1zf) if (1zf)
goto .L2; goto .L2;
edx = 1; edx = 1;
goto .L4; goto .L4;
L2: L2:
edx = 1; edx = 1;
.L5: .L5:

tmp2 = (long) edx * (long) eax;

edx = edx * eax;

cf = (tmp2 >> 32 & OxfffffffflL) == 0
|| (tmp2 >> 32 & OFFFFFFL) == OxFFF
fFFFL;

of = (tmp2 >> 32 & OxfFFFFFL) == 0

tmp2 >> 32 & OxfFFFfL) == Oxffff

edx = edx * eax;

e R A

José Fonseca (FEUP) Interactive Decompilation 13 Dec 2006

Structure If-Else Statement

You have a conditional jump to two sets of consecutive statements.
Make each set of statements a clause of the conditional statement.

int factorial(int eax) int factorial(int eax)
{ {
tmpl = eax & eax; tmpl = eax & eax;
zf = tmpl == 0; zf = tmpl == 0;
if (1zf) if(1zf)
goto .L2; =
edx = 1; =
goto .L4; =
L2: =
edx = 1; edx = 1;
.L5: .L5:
edx = edx * eax; edx = edx * eax;
eax = eax - 1; eax — eax - 1;
zf = eax == 0; zf = eax == 0;
if (1zf) if(1zf)
goto .L5; goto .L5;
L4 = }
= else
= edx = 1;
eax = edx; eax = edx;
return eax; return eax;

José Fonseca (FEUP) Interactive Decompilation 13 Dec 2006 17 / 35

Structure Do-While Statement

You have a conditional jump to a previous label.
Make the intermediate statements the body of a do-while loop.

int factorial(int eax)

{
tmpl = eax & eax;
zf = tmpl == 0;
if (1zf)
{

edx = 1;
.L5:

edx = edx * eax;
eax = eax - 1;
zf = eax == 0;

if(1zf)
goto .L5;
}

else

edx = 1;
eax = edx;
return eax;

José Fonseca (FEUP)

4

iy

int factorial(int eax)

{

tmpl = eax & eax;
zf = tmpl == 0;
if(1zf)

{

edx = 1;

do

{
edx = edx * eax;
eax = eax - 1;
zf = eax == 0;

while(!zf);

}

else

edx = 1;
eax = edx;
return eax;

Interactive Decompilation 13 Dec 2006 18 / 35

You have a temporary variable that is assigned and used just once or a few times.
Replace all references to that temporary value with the actual expression.

int factorial(int eax)

{
tmpl = eax & eax;
zf = tmpl == 0;
if (1zf)

edx = 1;

do

{
edx = edx * eax;
eax = eax - 1;
zf = eax == 0;

while(!zf);
}
else

edx = 1;
eax = edx;
return eax;

José Fonseca (FEUP)

iy

=
=

int factorial(int eax)

{

}

Interactive Decompilation

if(!((eax & eax) == 0))

{
edx = 1;
do

edx = edx * eax;
eax = eax - 1;

while(!(eax == 0));

}

else
edx = 1;

return edx;

13 Dec 2006 19 / 35

Simplify Expression

You have a mathematical expression with unnecessary complexities.

Simplify that expression.

int factorial(int eax)

if(!((eax & eax) == 0))
{

edx = 1;

do

edx = edx * eax;
eax = eax - 1;

while(!(eax == 0));

else
edx = 1;
return edx;

}

José Fonseca (FEUP)

int factorial(int eax)

if(eax |= 0)
{
edx = 1;
do

edx = edx * eax;
eax = eax - 1;
}
while(cax = 0);
}
else
edx = 1;
return edx;

Interactive Decompilation 13 Dec 2006 20 / 35

Rename Symbol

You have a symbol with a meaningless machine generated name.

Rename that symbol into some meaningful.

int factorial(int eax)

if(eax 1= 0)
edx = 1;
do
{

edx = edx * eax;
eax = eax - 1;

while(eax 1= 0);

else
edx = 1;
return edx;

}

José Fonseca (FEUP)

= int factorial(int n)

while(n !'= 0);

if(n 1= 0)

= f=1;
do

=
=

}

else
= f=1;
= return f;

Interactive Decompilation

f=1f*n;
n=n-1;

13 Dec 2006

PWES

Original code vs. Final

int factorial(int n)
{
int f;
f=1;
while(n)
fx=n——;
return f;

José Fonseca (FEUP)

int factorial(int n)

Interactive Decompilation

{
if(n I=0)
{
f=1;
do
f="fx*n;
n=n-—1;
}
while(n != 0);
}
else
f=1;
return f;
}
13 Dec 2006 22 /35

The IDC Tool

The IDC tool is an interactive decompiler, where the user starts with an
almost literal translation of Assembly code in C language, which he
progressively decompiles by the successive application of low-level
refactorings, ultimately leading to high-level C code.

o Import Intel IA32 Assembly code, in the AT&T syntax.
@ Visualize and export quasi-C language code.

@ Provides a context-sensitive refactoring browser to the low-level
refactorings listed in the catalog.

@ Visualize and manipulate the CFG and the AST of the program.

Availability

Source code, installation instructions, and examples are available from
http://paginas.fe.up.pt/~mei04010/idc/.

v

José Fonseca (FEUP) Interactive Decompilation 13 Dec 2006 23 /35

http://paginas.fe.up.pt/~mei04010/idc/

Main View

File

L2

LLS:

L4

~ Interactive Decompiler

Edit Refactor Mew Help

factorial:

tmpl = eax & eax;
cf =0;

of =0;

zZf=tmpl == 0:

nf =tmpl == 31 & 1;

if(!zf)
goto .L.2;
Add Function Argument
View » Dead Code Elimination

edx =1
goto .L4;

ct Function
Inline Temp

tmp2 = (unsigned long int) edx * (| Fename

edx = edx *¥eax; Functio

ef = (tmp2 == 32 & OHffffffff) ==

of = (tmp2 == 32 & OHFfffffff) ==

tmp3 = eax;

eax = eax -1;

cf = H{tmp3 == 31 & 1) && 1 == 31 IF
= 1

:;; ;Zf‘i;b' 3L &L EE L >> 31 Eg e (iThen

zf = eax = Structure Loop

if(1zf) Structure Return

goto L5

edx =1;

ol
ol

eax = edx;
return:

== OnffFFff;
== Offffe,

Wtmp3 == 31 & 1) ||1 == 31 & 1%
|| {tmp3 == 31 & 1) && 1 > 31 & 1 &b eax => 31 & 1;

José Fonseca (FEUP)

Interactive Decompilation

13 Dec 2006 24

/ 35

Control Flow Graph and Term Inspector Views

~ Control Flow Graph o x
QA Q
Term Type |Annotations =
Sigriea
1 INT
v I APPL Pathi([6,01)
¥ Unary APPL Path([0,6,0])
= Not APPL
Bool APPL Path([0,0,0.6,01)
> sym APPL Path([1,0,6,0]), Reg
o STR
- GoTo APPL Path([1,6,0])
= sym APPL Path([0.1,6,01)
e STR
NoStmt APPL Path([2,6,0])
= Assign APPL Pathl([7.0])
= Blob APPL Path([0.7.0])
32 INT
< sym APPL Path([1,7,0]), Reg
‘e STR
= Lt APPL
~ It APPL Path([0,2,7,01)
= 32 INT
k) > A

José Fonseca (FEUP) Interactive Decompilation 13 Dec 2006

Application Example

Play Movie

José Fonseca (FEUP) Interactive Decompilation 13 Dec 2006 26 / 35

Architecture of the ID

User interface

2

N

]

Program } Program Machine
transformation visualization support
Program
representation
José Fonseca (FEUP) Interactive Decompilation 13 Dec 2006

27 / 35

Intermediate Representation Data-type

The IR is the Abstract Syntax Tree (AST) encapsulated in an ATerm
(Annotated Term).

ATerm representation
An ATerm can be:

| A

@ an integer literal, such as 1 and —28;

@ a real literal, such as 1.414 and 1E-+10;

@ a string literal, such as "x" and "Hello World!";
@ a list of zero or more ATerms, such as [1, 0.2, "a"] and [|;
o o

°

or a function application, such as Plus(Var("x"), Int(1)), and True;

and optionally followed by one or more annotations ATerms, such as,
Mult(1,4){Type(Int)}, or Sym("x"){Line(14),Col(5)}.

José Fonseca (FEUP) Interactive Decompilation 13 Dec 2006 28 / 35

Intermediate Representation Schema

stmt Asm(string opcode, expr* operands)
Assign(type, optExpr dest, expr src)
Label(string name)

GoTo(expr addr)

Break

Continue

Block(stmt*)

If (expr cond, stmt, stmt)

While(expr cond, stmt)
DoWhile(expr cond, stmt)

Ret(type, optExpr value)

Var(type, string name, optExpr value)
Function(type, string name, arg*, stmt* body)
NoStmt

José Fonseca (FEUP) Interactive Decompilation 13 Dec 2006 29 / 35

Program Transformation

@ Program decompilation and program refactoring are particular cases
of program transformation.

@ An object-oriented framework, inspired on the Stratego language,
that allows to create complex term transformations from simple
blocks was developed.

@ A parser for a program transformation language similar to Stratego
was implemented, to create transformations with less typing.

José Fonseca (FEUP) Interactive Decompilation 13 Dec 2006 30/ 35

Assembly Loading and Translation Process

Input Assembly code

.text
.globl main
main:

movl $1, Y%eax

ret

4
Low-level IR

Module(|

Label("main"),

Pretty-print

main:
Asm("movl", [Sym("eax"){Reg}, Lit(Int(32, Signed), 1)]), =1 asm("movl", eax, 1);
Asm("ret",[]) asm("ret");
)
I
Translated IR
Module(| Pretty-print
Label("main"), main:
Assign(Blob(32), Sym("eax"){Reg}, Lit(Int(32, Signed), 1)), |7| eax=1;
Ret(Void,NoExpr) return;
)
José Fonseca (FEUP)

Interactive Decompilation

13 Dec 2006 31/35

Pointing Problem Resolution via Tree Path Annotation

Initial IR Path annotated IR
If(If
Sym("x"), Sym("x"){Path([0])},
Assign(Assign(
Int (32, Signed), - Int (32, Signed){Path([0,1])},
Sym("x"), Sym("x"){Path([1,1])},
Lit (Int (32, Signed),0) Lit (Int (32, Signed), 0){Path([2,1])}
)){Path([1]) },
NoStmt NoStmt{Path([2])}
)){Path([]) }
U
Path annotated Box representation
Click sensitive Ul T(\;‘()[ath”' 0
H([T(“type", "keyword", "if"), “(", T("path", [0], "x"), ")" 1),
if(x|) 1
. - T("path”, [1],
- @;) H([T("path, [L1], "x"), " ", "=" "" T("path", [2,1], "0"), ";" 1)
)

José Fonseca (FEUP) Interactive Decompilation 13 Dec 2006 32/35

Conclusions

@ Bringing together human interaction and refactoring has the potential
to make decompilation a more useful and effective process.

@ A catalog of refactorings for low-level code was defined, where each
refactoring helps making the code incrementally more intelligible.

@ An interactive decompilation tool employing this concept was
developed.

@ As side product of this work, a Python version of the ATerm library
was developed, as well as program transformation system inspired on
the Stratego language.

José Fonseca (FEUP) Interactive Decompilation 13 Dec 2006 33 /35

Directions for Future Work

Implement the remaining refactorings.

Annotate the IR with its Static Single Assignment representation.
Visualize the Program Dependency Graph and program slices.
Make the interactive tool a generic refactoring browser.

Target the C++ language instead of plain C.

More versatile undo mechanism.

José Fonseca (FEUP) Interactive Decompilation 13 Dec 2006 34 /35

Thank you

	Introduction
	Catalog of Low-level Refactorings
	

	The IDC tool
	Conclusions

